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Abstract. This paper considers the sequence of fractional parts of multiples of the golden
ratio. The main result characterizes the Fibonacci numbers by minimizing or maximizing this
sequence.

1. Introduction and Preliminaries

Concerning the Golden Section there are two ratios – ratio ‘big/small’ and reciprocal ratio
‘small/big’ – which are calculated as follows

Φ =

√
5 + 1

2
= 1.618... and ψ =

√
5− 1

2
= 0.618...

Obviously,

Φ + ψ =
√

5 and, basically, ψ2 = 1− ψ

The Fibonacci numbers are recursively defined from F1 = 1 and F2 = 1 by

Fn+2 = Fn+1 + Fn (n = 1, 2, 3, ...)

In this paper, i, k, n always denote natural numbers ≥ 1. Most properties of Φ, ψ, and the
Fibonacci sequence can be found in the well-known reference work [4]. In particular, Binet’s
formula

Fn =
1√
5

(
Φn − (−ψ)n

)
(1.1)

This formula allows both

• direct calculation of Fn from Φ and
• calculating the infinitesimal difference between Fn+1

Fn
and Φ

The latter means that Fn+1

Fn
− Φ = (−ψ)n

Fn
and derives from:

Fn+1 − ΦFn
(1.1)
= 1√

5

(
− (−ψ)n+1 + Φ(−ψ)n

)
= (−ψ)n 1√

5
(ψ + Φ) = (−ψ)n. Moreover, this

proves Fn+1 = ΦFn + (−ψ)n and, hence,

ΦFn + (−ψ)n ∈ N (1.2)

For x ∈ R let floor bxc be the greatest integer ≤ x and ceiling dxe = bxc+1. The fractional
part x− bxc is denoted by 〈x〉. Note that for x, y, δ ∈ R

〈x+ y〉 =

{
〈x〉+ 〈y〉 − 1 if 〈x〉+ 〈y〉 ≥ 1

〈x〉+ 〈y〉 if 〈x〉+ 〈y〉 < 1
(1.3)
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and

x+ δ ∈ N and − 1 < δ < 1 implies x+ δ =

{
dxe if δ > 0

bxc if δ ≤ 0
(1.4)

These formulas will be useful later.

2. The Golden Sequence

The Golden Sequence is defined by the fractional parts of nΦ

〈Φ〉, 〈2Φ〉, 〈3Φ〉, . . .
Since Φ = 1 + ψ, it holds 〈nΦ〉 = 〈nψ〉 for all n ≥ 1. Figure 1 illustrates the initial values

of the Golden Sequence, using different symbols for 〈nΦ〉 if n is a Fibonacci number.

Figure 1. The Golden Sequence – Fibonacci elements emphasized

The subsequences 〈F1Φ〉, 〈F3Φ〉, 〈F5Φ〉, 〈F7Φ〉, . . . and 〈F2Φ〉, 〈F4Φ〉, 〈F6Φ〉, . . . are mono-
tone. This results from

Lemma 2.1. (cf. [3], p. 85, exercise 31) For all 1 ≤ k ∈ N

〈F2k−1Φ〉 = ψ2k−1 and 〈F2kΦ〉 = 1− ψ2k

Proof. By (1.2) and (1.4), F2k−1Φ + (−ψ)2k−1 = bF2k−1Φc. Thus, 〈F2k−1Φ〉 = ψ2k−1. For
the second part, again by (1.2) and (1.4), F2kΦ + (−ψ)2k = dF2kΦe = bF2kΦc + 1. Thus,
〈F2kΦ〉 = 1− ψ2k. �

Now, the Fibonacci elements – odd or even subscripts – of the Golden Sequence are shown
to be extreme – minimal or maximal, respectively – until the next Fibonacci element but one.

Lemma 2.2. For all 1 ≤ k ∈ N
(a) ψ2k−1 ≤ 〈iΦ〉 for all 1 ≤ i < F2k+1 and
(b) 1− ψ2k ≥ 〈iΦ〉 for all 1 ≤ i < F2k+2

Proof. By ‘interlaced’ induction on k. (a) holds for k = 1 since F3 = 2 and ψ1 ≤ 〈Φ〉. (b) for
k = 1 derives from F4 = 3 and 1− ψ2 = ψ ≥ 〈Φ〉, 〈2Φ〉 = 2ψ − 1 = 0.236...

Suppose (a) and (b) hold for k.
(a) For k + 1, (a) follows since

ψ2k+1 < 〈iΦ〉 for all F2k+1 < i < F2k+3 (2.1)

For arbitrary i0 between F2k+1 and F2k+3 there exists j0 < F2k+2 such that i0 = F2k+1 + j0.
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By (b), 1 − ψ2k ≥ 〈j0Φ〉. By Lemma 2.1, 〈F2k+1Φ〉 = ψ2k+1. Thus, 〈F2k+1Φ〉 + 〈j0Φ〉 ≤
ψ2k+1 + 1 − ψ2k < 1. Equation (1.3) yields 〈i0Φ〉 = 〈F2k+1Φ + j0Φ〉 = 〈F2k+1Φ〉 + 〈j0Φ〉. As
〈j0Φ〉 > 0 it follows 〈i0Φ〉 > 〈F2k+1Φ〉 = ψ2k+1 and (2.1) is proved.

(b) For k + 1, (b) follows since

1− ψ2k+2 > 〈iΦ〉 for all F2k+2 < i < F2k+4 (2.2)

For arbitrary i0 between F2k+2 and F2k+4 there exists j0 < F2k+3 such that i0 = F2k+2 + j0.
By (a) for k + 1, ψ2k+1 ≤ 〈j0Φ〉. Again by Lemma 2.1, 〈F2k+2Φ〉 = 1 − ψ2k+2. Thus,

〈F2k+2Φ〉+ 〈j0Φ〉 ≥ 1− ψ2k+2 + ψ2k+1 > 1. Equation (1.3) yields 〈i0Φ〉 = 〈F2k+2Φ + j0Φ〉 =
〈F2k+2Φ〉+ 〈j0Φ〉 − 1. As 〈j0Φ〉 − 1 < 0 it follows 〈i0Φ〉 < 〈F2k+2Φ〉 = 1− ψ2k+2 and (2.2) is
proved. �

Theorem 2.3. A positive integer n is a Fibonacci number if and only if
(a) 〈nΦ〉 < 〈iΦ〉 for all 1 ≤ i < n or (b) 〈nΦ〉 > 〈iΦ〉 for all 1 ≤ i < n

Moreover,
(a) holds iff n = F2k−1 for some k ≥ 1, and
(b) holds iff n = F2k for some k ≥ 1

Proof. It suffices to show the ‘moreover’ parts. Assume (a) holds. Let k be maximal such that
F2k−1 ≤ n. Thus, F2k+1 > n. By Lemma 2.2, it follows ψ2k−1 ≤ 〈nΦ〉. Now, F2k−1 = n will
be shown by reductio ad absurdum. Suppose F2k−1 < n. By (a), 〈nΦ〉 < 〈F2k−1Φ〉 = ψ2k−1.
This contradicts ψ2k−1 ≤ 〈nΦ〉.

Conversely, let n = F2k−1 for some k ≥ 1. (a) is true if k = 1, since n = F1 = 1, and, if
k > 1, by Lemma 2.2, for all 1 ≤ i < F2k−1 it holds 〈iΦ〉 ≥ ψ2k−3 > ψ2k−1 = 〈F2k−1Φ〉 = 〈nΦ〉.

Suppose (b) holds. Let k be maximal such that F2k ≤ n. Thus, F2k+2 > n. By Lemma 2.2,
it follows 1 − ψ2k ≥ 〈nΦ〉. Again, F2k = n will be shown by reductio ad absurdum. Suppose
F2k < n. By (b), 〈nΦ〉 > 〈F2kΦ〉 = 1− ψ2k. This contradicts 1− ψ2k ≥ 〈nΦ〉.

Conversely, let n = F2k for some k ≥ 1. (b) is true if k = 1, since n = F2 = 1, and, if k > 1,
by Lemma 2.2, for all 1 ≤ i < F2k it holds 〈iΦ〉 ≤ 1− ψ2k−2 < 1− ψ2k = 〈F2kΦ〉 = 〈nΦ〉. �

Characterizing conditions, other than that of Theorem 2.3, are stated in [1], i.e., a positive
integer n is a Fibonacci number if and only if 5n2− 4 or 5n2 + 4 is a complete square. This is
a special case of a more general result from [2].
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