THE GOLDEN SEQUENCE

BURGHARD HERRMANN

ABSTRACT. This paper considers the sequence of fractional parts of multiples of the golden ratio. The main result characterizes the *Fibonacci* numbers by minimizing or maximizing this sequence.

1. INTRODUCTION AND PRELIMINARIES

Concerning the *Golden Section* there are two ratios – ratio 'big/small' and reciprocal ratio 'small/big' – which are calculated as follows

$$\Phi = \frac{\sqrt{5}+1}{2} = 1.618...$$
 and $\psi = \frac{\sqrt{5}-1}{2} = 0.618...$

Obviously,

$$\Phi + \psi = \sqrt{5}$$
 and, basically, $\psi^2 = 1 - \psi$

The *Fibonacci* numbers are recursively defined from $F_1 = 1$ and $F_2 = 1$ by

$$F_{n+2} = F_{n+1} + F_n \qquad (n = 1, 2, 3, \dots)$$

In this paper, i, k, n always denote natural numbers ≥ 1 . Most properties of Φ, ψ , and the *Fibonacci* sequence can be found in the well-known reference work [4]. In particular, Binet's formula

$$F_n = \frac{1}{\sqrt{5}} \left(\Phi^n - (-\psi)^n \right)$$
 (1.1)

This formula allows both

- direct calculation of F_n from Φ and
- calculating the infinitesimal difference between $\frac{F_{n+1}}{F_n}$ and Φ

The latter means that $\frac{F_{n+1}}{F_n} - \Phi = \frac{(-\psi)^n}{F_n}$ and derives from:

 $F_{n+1} - \Phi F_n \stackrel{(1.1)}{=} \frac{1}{\sqrt{5}} \left(-(-\psi)^{n+1} + \Phi(-\psi)^n \right) = (-\psi)^n \frac{1}{\sqrt{5}} (\psi + \Phi) = (-\psi)^n.$ Moreover, this proves $F_{n+1} = \Phi F_n + (-\psi)^n$ and, hence,

$$\Phi F_n + (-\psi)^n \in \mathbb{N} \tag{1.2}$$

For $x \in \mathbb{R}$ let floor $\lfloor x \rfloor$ be the greatest integer $\leq x$ and ceiling $\lceil x \rceil = \lfloor x \rfloor + 1$. The fractional part $x - \lfloor x \rfloor$ is denoted by $\langle x \rangle$. Note that for $x, y, \delta \in \mathbb{R}$

$$\langle x+y\rangle = \begin{cases} \langle x\rangle + \langle y\rangle - 1 & \text{if } \langle x\rangle + \langle y\rangle \ge 1\\ \langle x\rangle + \langle y\rangle & \text{if } \langle x\rangle + \langle y\rangle < 1 \end{cases}$$
(1.3)

THE GOLDEN SEQUENCE

and

$$x + \delta \in \mathbb{N} \text{ and } -1 < \delta < 1 \text{ implies } x + \delta = \begin{cases} [x] & \text{if } \delta > 0\\ [x] & \text{if } \delta \le 0 \end{cases}$$
(1.4)

These formulas will be useful later.

2. The Golden Sequence

The Golden Sequence is defined by the fractional parts of $n\Phi$

$$\langle \Phi \rangle, \langle 2\Phi \rangle, \langle 3\Phi \rangle, \ldots$$

Since $\Phi = 1 + \psi$, it holds $\langle n\Phi \rangle = \langle n\psi \rangle$ for all $n \ge 1$. Figure 1 illustrates the initial values of the *Golden Sequence*, using different symbols for $\langle n\Phi \rangle$ if n is a *Fibonacci* number.

FIGURE 1. The Golden Sequence – Fibonacci elements emphasized

The subsequences $\langle F_1 \Phi \rangle, \langle F_3 \Phi \rangle, \langle F_5 \Phi \rangle, \langle F_7 \Phi \rangle, \ldots$ and $\langle F_2 \Phi \rangle, \langle F_4 \Phi \rangle, \langle F_6 \Phi \rangle, \ldots$ are monotone. This results from

Lemma 2.1. (cf. [3], p. 85, exercise 31) For all $1 \le k \in \mathbb{N}$

 $\langle F_{2k-1}\Phi\rangle = \psi^{2k-1}$ and $\langle F_{2k}\Phi\rangle = 1 - \psi^{2k}$

Proof. By (1.2) and (1.4), $F_{2k-1}\Phi + (-\psi)^{2k-1} = \lfloor F_{2k-1}\Phi \rfloor$. Thus, $\langle F_{2k-1}\Phi \rangle = \psi^{2k-1}$. For the second part, again by (1.2) and (1.4), $F_{2k}\Phi + (-\psi)^{2k} = \lceil F_{2k}\Phi \rceil = \lfloor F_{2k}\Phi \rfloor + 1$. Thus, $\langle F_{2k}\Phi \rangle = 1 - \psi^{2k}$.

Now, the *Fibonacci* elements – odd or even subscripts – of the *Golden Sequence* are shown to be extreme – minimal or maximal, respectively – until the next *Fibonacci* element but one.

Lemma 2.2. For all $1 \leq k \in \mathbb{N}$

(a)
$$\psi^{2k-1} \leq \langle i\Phi \rangle$$
 for all $1 \leq i < F_{2k+1}$ and
(b) $1 - \psi^{2k} \geq \langle i\Phi \rangle$ for all $1 \leq i < F_{2k+2}$

Proof. By 'interlaced' induction on k. (a) holds for k = 1 since $F_3 = 2$ and $\psi^1 \leq \langle \Phi \rangle$. (b) for k = 1 derives from $F_4 = 3$ and $1 - \psi^2 = \psi \geq \langle \Phi \rangle, \langle 2\Phi \rangle = 2\psi - 1 = 0.236...$

Suppose (a) and (b) hold for k.

(a) For k + 1, (a) follows since

$$\psi^{2k+1} < \langle i\Phi \rangle$$
 for all $F_{2k+1} < i < F_{2k+3}$ (2.1)

For arbitrary i_0 between F_{2k+1} and F_{2k+3} there exists $j_0 < F_{2k+2}$ such that $i_0 = F_{2k+1} + j_0$.

FEBRUARY 2014

THE FIBONACCI QUARTERLY

By (b), $1 - \psi^{2k} \ge \langle j_0 \Phi \rangle$. By Lemma 2.1, $\langle F_{2k+1} \Phi \rangle = \psi^{2k+1}$. Thus, $\langle F_{2k+1} \Phi \rangle + \langle j_0 \Phi \rangle \le \psi^{2k+1} + 1 - \psi^{2k} < 1$. Equation (1.3) yields $\langle i_0 \Phi \rangle = \langle F_{2k+1} \Phi + j_0 \Phi \rangle = \langle F_{2k+1} \Phi \rangle + \langle j_0 \Phi \rangle$. As $\langle j_0 \Phi \rangle > 0$ it follows $\langle i_0 \Phi \rangle > \langle F_{2k+1} \Phi \rangle = \psi^{2k+1}$ and (2.1) is proved.

(b) For k + 1, (b) follows since

$$1 - \psi^{2k+2} > \langle i\Phi \rangle$$
 for all $F_{2k+2} < i < F_{2k+4}$ (2.2)

For arbitrary i_0 between F_{2k+2} and F_{2k+4} there exists $j_0 < F_{2k+3}$ such that $i_0 = F_{2k+2} + j_0$. By (a) for k + 1, $\psi^{2k+1} \leq \langle j_0 \Phi \rangle$. Again by Lemma 2.1, $\langle F_{2k+2}\Phi \rangle = 1 - \psi^{2k+2}$. Thus, $\langle F_{2k+2}\Phi \rangle + \langle j_0\Phi \rangle \geq 1 - \psi^{2k+2} + \psi^{2k+1} > 1$. Equation (1.3) yields $\langle i_0\Phi \rangle = \langle F_{2k+2}\Phi + j_0\Phi \rangle = \langle F_{2k+2}\Phi \rangle + \langle j_0\Phi \rangle - 1$. As $\langle j_0\Phi \rangle - 1 < 0$ it follows $\langle i_0\Phi \rangle < \langle F_{2k+2}\Phi \rangle = 1 - \psi^{2k+2}$ and (2.2) is proved.

Theorem 2.3. A positive integer n is a Fibonacci number if and only if

(a) $\langle n\Phi \rangle < \langle i\Phi \rangle$ for all $1 \le i < n$ or (b) $\langle n\Phi \rangle > \langle i\Phi \rangle$ for all $1 \le i < n$ Moreover,

- (a) holds iff $n = F_{2k-1}$ for some $k \ge 1$, and
- (b) holds iff $n = F_{2k}$ for some $k \ge 1$

Proof. It suffices to show the 'moreover' parts. Assume (a) holds. Let k be maximal such that $F_{2k-1} \leq n$. Thus, $F_{2k+1} > n$. By Lemma 2.2, it follows $\psi^{2k-1} \leq \langle n\Phi \rangle$. Now, $F_{2k-1} = n$ will be shown by *reductio ad absurdum*. Suppose $F_{2k-1} < n$. By (a), $\langle n\Phi \rangle < \langle F_{2k-1}\Phi \rangle = \psi^{2k-1}$. This contradicts $\psi^{2k-1} \leq \langle n\Phi \rangle$.

Conversely, let $n = F_{2k-1}$ for some $k \ge 1$. (a) is true if k = 1, since $n = F_1 = 1$, and, if k > 1, by Lemma 2.2, for all $1 \le i < F_{2k-1}$ it holds $\langle i\Phi \rangle \ge \psi^{2k-3} > \psi^{2k-1} = \langle F_{2k-1}\Phi \rangle = \langle n\Phi \rangle$.

Suppose (b) holds. Let k be maximal such that $F_{2k} \leq n$. Thus, $F_{2k+2} > n$. By Lemma 2.2, it follows $1 - \psi^{2k} \geq \langle n\Phi \rangle$. Again, $F_{2k} = n$ will be shown by reductio ad absurdum. Suppose $F_{2k} < n$. By (b), $\langle n\Phi \rangle > \langle F_{2k}\Phi \rangle = 1 - \psi^{2k}$. This contradicts $1 - \psi^{2k} \geq \langle n\Phi \rangle$.

Conversely, let $n = F_{2k}$ for some $k \ge 1$. (b) is true if k = 1, since $n = F_2 = 1$, and, if k > 1, by Lemma 2.2, for all $1 \le i < F_{2k}$ it holds $\langle i\Phi \rangle \le 1 - \psi^{2k-2} < 1 - \psi^{2k} = \langle F_{2k}\Phi \rangle = \langle n\Phi \rangle$. \Box

Characterizing conditions, other than that of Theorem 2.3, are stated in [1], i.e., a positive integer n is a *Fibonacci* number if and only if $5n^2 - 4$ or $5n^2 + 4$ is a complete square. This is a special case of a more general result from [2].

3. Acknowledgement

Finally, the author would like to thank Gernot Stroth (Univ. of Halle-Wittenberg), and the anonymous referee for their support and contributions.

References

- I. M. Gessel, Problem H-187: n is a Fibonacci number if and only if 5n² + 4 or 5n² 4 is a square, The Fibonacci Quarterly 10 (1972), 417.
- [2] C. Kimberling, The equation $m^2 4k = 5n^2$ and Unique Representations of Positive Integers, The Fibonacci Quarterly 45 (2007), 304 312.
- [3] D. E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, 2nd edition, Addison Wesley, 1973.
- [4] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Ellis Horwood Limited, Chichester, 1989.

THE GOLDEN SEQUENCE

MSC2010: 11B39, 11B50, 97F80

VENLOER STR. 253, 50823 COLOGNE, GERMANY *E-mail address*: bfgh@netcologne.de